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Abstract. We present a novel approach of modelling surface light scattering in the context of two-dimensional
reflector design, relying on energy conservation and optimal transport theory. For isotropic scattering in cylin-
drically or rotationally symmetric systems with in-plane scattering, the scattered light distribution can be ex-
pressed as a convolution between a scattering function, which characterises the optical properties of the surface,
and a specular light distribution. Deconvolving this expression allows for traditional specular reflector design
procedures to be used, whilst accounting for scattering. This approach thus constitutes solving the inverse prob-
lem of light scattering, allowing for direct computation of the reflector surface, without the need for design
iterations.
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1 Introduction

The engineering field of optical design is concerned with
constructing an optical system that produces a desired out-
put light distribution from a given source light distribution.
This is often done within the confines of the so-called geo-
metrical optics (GO) approximation, where light propaga-
tion is modelled using light rays – lines collinear with the
Poynting vector. Within the GO approximation, phenom-
ena such as diffraction and interference are typically not
accounted for ([1], p. 159]). Contemporary optical designs
sometimes incorporate scattering elements, but due to the
absence of such phenomena in the GO approximation, their
inclusion is typically realised using trial-and-error in the
design phase. This places restrictions on what kind of opti-
cal systems one can design, as scattering is difficult to
account for in the design process. In this paper, we make
a first effort towards constructing a surface light scattering
model suitable for inverse reflector design.

There are a myriad of approaches one could consider to
include scattering. Themost fundamental, and in some ways
most natural, approach is that of solving Maxwell’s equa-
tions directly. This would constitute a substantial departure
in terms of strategy, and would in theory work for most real-
istic systems, but it is often impractical due to spiralling
complexity. As such, a number of approximations based

on Maxwell’s equations have been formulated which are
applicable to problems within several regimes of parameter
values, such as surface roughness or incident angle. Some
highlights include the rigorous vector perturbation theory
published by Lord Rayleigh in 1907 [2], and later expanded
by Rice (1951) [3], and the rather different Kirchhoff
approach, based on randomphase variations due tomicroto-
pographic surface features, most commonly attributed to
Beckmann and Spizzichino (1963) [4]. These approaches
are valid in different regimes. In particular, Rayleigh–Rice
vector perturbation theory agrees well with experimental
measurements of wide-angle scattering (up to approxi-
mately 50� of the polar angle of detector/source) for scatter-
ing from optically smooth surfaces. Here, “optically smooth”
refers to the root mean square (RMS) surface roughness rs
divided by the wavelength k being much less than unity,
i.e., rs/k � 1 ([5], p. 49). The Beckmann–Kirchhoff theory,
on the other hand, is valid for rougher surfaces, but due to a
moderate-angle assumption as part of its derivation, it is not
suitable for use with wide scattering angles and/or large
angles of incidence.

There have been numerous developments since these
early theories were formulated. Here, we highlight the work
of Church, who published multiple papers during the 1970s
on Rayleigh–Rice theory in the context of surface scattering
from optically smooth surfaces [6]. According to Harvey, his
contributions were instrumental in shaping the applied
optics community at the time ([5], p. 50). The last work from
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this era we want to highlight is that of Harvey and Shack
from 1976, where they developed a linear systems formula-
tion of surface scattering based on a surface transfer function
[7]. This approach allows for the use of the Fourier transform
of the surface transfer function to compute a scattered radi-
ance function “closely related to the bidirectional reflectance
distribution function (BRDF)” ([5], p. 50). This was later
extended to the generalised Harvey-Shack surface scattering
theory, which is able to treat arbitrarily rough surfaces with
arbitrary incident and scattering angles [8].

Rather than solving Maxwell’s equations, with or
without approximations, one could alter the GO rays in
some manner such that they can be used to compute scat-
tering phenomena. One example of such an approach, that
still retains many of the computational benefits of GO, is to
modify the GO rays such that they carry information
regarding the phase of the light, which can form the basis
of diffraction calculations. A good overview of this approach
can be found in McNamara [9]. Whilst computationally
efficient, such an approach would still require substantial
modifications to contemporary reflector design procedures.

In our approach, we remain in the domain of traditional
GO, and as an alternative to carrying phase information,
we propose a surface scattering model inspired by optimal
transport theory [10], which leads to a convolution integral
for cylindrically and rotationally symmetric problems with
isotropic in-plane scattering. This convolution integral
yields the scattered light distribution, given a scattering
function and a specular target distribution, where the
former characterises the optical properties of the surface.
This is a forward problem, but it can also be cast in terms
of an inverse problem – given a desired target distribution
and a scattering function, one may perform deconvolution
to find an appropriate intermediate specular target distri-
bution, which can in turn be used to design the optical
element using traditional specular design methods. Our
approach thus allows scattering to be taken into account
in a simple pre-processing step, allowing for direct computa-
tion of the reflector surface without the need for design iter-
ations or expensive forward raytracing calculations. This is
in contrast with the established techniques of designing
reflectors with a scattering surface, constituting forward
scattering calculations and manual design iterations, i.e.,
designing a reflector and raytracing with a suitable Bidirec-
tional Reflectance Distribution Function (BRDF) using
software like LightTools, Zemax or Code V, followed by
making manual adjustments to the reflector surface in an
attempt to account for potential discrepancies between
the resulting and desired scattered light distributions. The
advantage of our approach is thus that we may separate
the scattering calculations from the reflector design step,
allowing us to greatly benefit from the maturity of specular
reflector design procedures, whilst still accounting for
scattering.

The computation of specular reflectors has a long his-
tory that is largely outside of the scope of this paper. A
recent highlight is the development of methods based
around solving the Monge–Ampère equation [11, 12]. A
comprehensive literature review of inverse illumination
optics may be found in [11] of Chapter 3. We shall restrict

our attention to the two-dimensional procedure developed
by Maes ([13], Chap. 3) to compute cylindrically and rota-
tionally symmetric reflectors. To the best of our knowledge,
directly computing reflectors with scattering surfaces in illu-
mination optics is very rare; the best reference we have
found is Lin et al., who designed a lens with a freeform scat-
tering inner surface and a spherical outer one [14]. The free-
form surface was designed by an iterative optimisation
procedure whereby a freeform surface represented by Bézier
curves was first computed and then modified iteratively to
take into account the difference between the prescribed tar-
get distribution and a raytraced one.

1.1 Summary of main contributions

In words, the main contribution of our approach is that it
contains a decoupling between the inverse scattering prob-
lem and the inverse reflector computation. This is very pow-
erful, since it allows one to take scattering into account in a
pre-processing step, such as in the algorithm below.

Prerequisites
For our method, we require:

� A source light distribution [lm/rad] (denoted f herein).
� A prescribed target light distribution [lm/rad] (denoted h
herein).

� A surface scattering function [1/rad] (denoted p herein;
related to the BRDF).

Algorithm

1. Deconvolve h and p to obtain a specular intensity dis-
tribution [lm/rad] (denoted gdc herein).

2. Compute the specular reflector which transforms the
source distribution f into gdc.

The effect of each step is shown in Figure 1, with a point
source at the origin. We note that the deconvolution
requires some care, as a light distribution is necessarily non-
negative. For this reason, we used Richardson–Lucy decon-
volution, which guarantees nonnegativity of the solution.
Computing the specular reflector essentially reduces to solv-
ing two coupled initial value problems.

1.2 Structure of manuscript

The structure of this paper is as follows. Cylindrically sym-
metric problems with in-plane scattering are covered first,
together with a few words about deconvolution in
Section 2.1, followed by rotationally symmetric problems
with in-plane scattering in Section 2.2. Next, two-dimen-
sional specular reflector design is briefly discussed in
Section 3, followed by some results in the form of reflectors
and raytraced distributions for validation of both the cylin-
drically and rotationally symmetric systems in Section 4.
Finally, conclusions with some proposals for expansions of
the model as well as suggestions for how to relate it to
the BRDF are presented in Section 5.
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Figure 1. The inverse problem of reflector design with a scattering surface; the first step (deconvolution) yields the specular target
distribution, which in turn can be used to compute the reflector by solving the inverse specular problem. The data is taken from
Example #1 in Section 4.
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2 Model

2.1 Cylindrically symmetric problems

Starting with cylindrically symmetric problems, consider
the situation depicted in Figure 2. This specular problem
can be viewed as a cross-section of a translationally invari-
ant problem, such as an extruded optical element, with a
line-source along the suppressed z-axis. For such a system,
the specular problem may be analysed in two-dimensions
([10], Chap. 3). Thus, the intensities and reflector surfaces
are independent of z and we may study a cross-section in
the plane of incidence, which is spanned by the source
and reflected rays, along ŝ and t̂, respectively, and which
contains the unit normal n̂. The hat (^) indicates unit
vectors throughout this manuscript, and positive angles
are by convention counter-clockwise. The reflector is para-
metrised by rðuÞ ¼ uðuÞêr , where u(u) > 0 is at least twice
continuously differentiable and êr ¼ ðcosðuÞ; sinðuÞÞ> is
the radial unit vector in polar coordinates. The angle u is
measured counter-clockwise from the positive x-axis, and
it fully characterises the source ray along ŝ � êr , emitted
form the line source at the origin O. The source ray along
ŝ intersects the reflector at some point P, where the unit
normal of the reflector is given by n̂. We take the conven-
tion ŝ � n̂ < 0, i.e., the normal is chosen directed towards
the light source. From the specular law of reflection
(LoR), we get an expression for the reflected direction
t̂ ¼ ðcosðwÞ; sinðwÞÞ>, i.e.,

t̂ ¼ ŝ� 2ðŝ � n̂Þn̂; ð1Þ
where we denote the angle between the positive x-axis and
t̂ by w.

To introduce scattering, consider the situation depicted
in Figure 2b. Inherent in this description is that we assume
the scattering is limited to the plane of incidence, so that
we can again study a cross-section of the translationally

invariant problem. This assumption is made in order to pre-
serve the two-dimensional nature of the specular problem
also when considering scattering. We postulate that it is
valid for a situation where an extruded reflector is illumi-
nated by a line-source parallel to the extrusion direction.
This is because the process of extrusion leads to grooves
along the extrusion direction, so that the cross-sectional
plane of symmetry is preserved. The validity of this claim
has not been investigated further; it is thus an assumption
made in the derivation of our two-dimensional surface scat-
tering model. Here, the source ray along ŝ gets mapped to a
scattered ray along û ¼ ðcosðcÞ; sinðcÞÞT, where c is mea-
sured counter-clockwise from the positive x-axis. The scat-
tered direction û can be described as a rotation of t̂ by a
stochastic parameter a around the axis parallel to the z-axis
passing through P, i.e.,

û ¼ RðaÞt̂; where RðaÞ :¼ cosðaÞ � sinðaÞ
sinðaÞ cosðaÞ

� �
:

ð2Þ
The stochastic parameter a is related to the scattering char-
acteristics of the surface. We note that a depends on w, both
in the sense that it will almost certainly have a different
stochastic value for a given w – in fact, since a is sampled
from a probability distribution, it has multiple values for
all w — and in the sense that the probability distribution
from which it is sampled may be different for different val-
ues of w. We shall return to the meaning of this, both math-
ematically and physically, in Section 2.1.2.

2.1.1 Mappings

To express reflection and scattering in terms of angles, let
us introduce two mappings which give the reflected and
scattered directions, i.e.,

mðuÞ ¼ w and sðw; aÞ ¼ c; ð3Þ

Figure 2. Reflectors exhibiting specular reflection (a), and light scattering (b); line-source along suppressed z-axis passing throughO.
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where the former is a reformulation of the law of reflec-
tion, and the latter represents the scattering. This might
seem superfluous, but it will simplify the discussion later,
especially in the general three-dimensional case, which we
intend to treat in a future publication. In addition to these
maps, we require their inverses to exist,

m�1ðwÞ ¼ u and s�1ðc; aÞ ¼ w: ð4Þ
Finally, we define a mapping yielding the scattering angle
a, for fixed w and c, i.e.,

aðw; cÞ ¼ a: ð5Þ
For a schematic summary, see Figure 3.

Explicitly, the maps are

mðuÞ ¼ uþ arccosð1� 2ðŝ � n̂Þ2Þ � w;

m�1ðwÞ ¼ w� arccosð1� 2ðŝ � n̂Þ2Þ � u;

sðw; aÞ¼ wþ a � c;

s�1ðc; aÞ¼ c� a � w;

aðw; cÞ¼ c� w � a;

ð6Þ

where the first two relations follow from cosðw� uÞ ¼ ŝ � t̂
– see Figure 2a – and the LoR – Eq. (1). The existence of
inverse mappings is not a priori guaranteed for all situa-
tions, but we shall restrict our attention to those where
they do exist.

2.1.2 Energy balances

Having presented the mappings for the angles, we introduce
the intensity distributions (illuminance) [lm/rad]:

� source intensity distribution f(u) > 0, u 2 [u1, u2],
� intermediate specular intensity distribution g(w) > 0,
w 2 [w1, w2],

� diffuse target intensity distribution h(c) > 0,
c 2 [c1, c2],

where [u1, u2] is the angular span of the reflector,
and hence the only relevant interval of the source distribu-
tion. The intervals ½w1, w2� and [c1, c2] are part of the
problem specifications (see the validation examples in
Sect. 4). In the design procedure outlined in Section 3,
the source and diffuse target distributions, f and h,
are given, and the intermediate specular intensity
distribution g is computed, and used in the design of the
reflector. Assuming no light is lost along the way from
source to target, we may formulate the global energy
balances as

Z u2

u1

f ðuÞ du ¼
Z w2

w1

gðwÞ dw ¼
Z c2

c1

hðcÞ dc; ð7Þ

or, in words, the energy of the source is equal to that of
the specular target, which in turn is equal to that of the
diffuse target distribution.

Consider next the relationship between w and c for a
fixed w = W. Suppose we have a perfect specular reflector
(i.e., a mirror). Then, a always vanishes, such that w � c
and for fixed w = W, we simply get a fixed c = C. This is
depicted schematically in Figure 4a. Suppose instead that
we have nonzero scattering, and let the scattering vary
depending on the incident angle. This yields a situation like
the one depicted schematically in Figure 4b. Here, fixing
w = W and tracking where all the light emerges, we see that
it falls within the interval ½C1;C2� � ½c1; c2�.

Motivated by the above observation and the more
fundamental concept of optimal transport theory, and in
particular Monge–Kantorovich problems ([10], Chap. 1),
let us introduce the density q(w, c) > 0, w 2 [w1, w2],
c 2 [c1, c2], with propertiesZ c2

c1

qðw; cÞ dc ¼ gðwÞ; ð8aÞ

Z w2

w1

qðw; cÞ dw ¼ hðcÞ; ð8bÞ

Figure 3. Relations between unit vectors and angles; all symbols are defined in the text.

J. Eur. Opt. Society-Rapid Publ. 19, 18 (2023) 5



that is, given w, integrating q(w, c) over all scattered
angles c gives the intermediate specular intensity g(w) in
the direction w. Stated otherwise, q(w, c) determines
how g(w) is spread over the range of scattered angles c.
Vice versa, given c, integrating q(w, c) over all specular
angles w gives the diffuse intensity h(c) in the direction
c. There are several natural requirements on q, including
positivity and finite support, i.e., it should have nonzero
values on a finite domain. In Figure 4b, its support may
be considered the shading, where darker values represent
a higher density, and the support is clearly a function of
the angles, i.e., the scattering is spatially varying. Notice
that the second energy balance in equation (7) is trivially
fulfilled by direct substitution:Z c2

c1

hðcÞ dc ¼
Z c2

c1

Z w2

w1

qðw; cÞ dwdc; ð9aÞ

Z w2

w1

gðwÞ dw ¼
Z w2

w1

Z c2

c1

qðw; cÞ dcdw; ð9bÞ

which are the same after a change of integration order.
Before defining this density q explicitly, we note that it
is closely related to the bidirectional reflectance distribu-
tion function (BRDF), which is defined as the ratio
between the outgoing radiance and the incoming irradi-
ance on some small area element [15]. In a future publica-
tion, we shall explore this connection, and show for which
circumstances the choice of q we make below is valid.

For now, we shall make an ad hoc choice of the density
q. In particular, consider

qðw; cÞ ¼ pðaðw; cÞ;wÞgðwÞ; ð10Þ
where p is a function describing the redistribution of light,
subject to an energy constraint we shall formulate
momentarily. Physically, this choice can be motivated
as follows. In the specular case, i.e., Figure 4a, p(a(w, c);
w) = p(c � w) = d(c � w), where d represents the Dirac
delta function, meaning the light will be scattered in

exactly one direction c � w. When p is some other appro-
priate function, light in direction w is scattered over mul-
tiple angles and we have a situation similar to that in
Figure 4b, i.e., the choice of q in equation (10) represents
the physical properties of light scattering. Note, however,
that p includes the parameter w, which highlights the pos-
sibility of unique p functions for each specular ray, which
is what is schematically shown in Figure 4b since the sup-
port varies with w. Inserting this density in equation (8a),
transforming the integration variable c to a, and noting
that with our maps, the Jacobian |os/oa| = 1, we getZ a2

a1

pða;wÞ da ¼ 1; ð11Þ

where a1 = min{a(w, c)|w 2 [w1, w2], c 2 [c1, c2]} and
a2 = max{a(w, c)|w 2 [w1, w2], c 2 [c1, c2]}. From equa-
tion (12) and using the fact that g(w) 	 0, it is clear that
p(a; w) 	 0, i.e., with this choice of q, p becomes a prob-
ability density function (PDF).

2.1.3 Integral equation

Let us now focus on the second integral relation – equation
(8b). Substituting our choice of q(w, c) from equation (10)
yields

hðcÞ ¼
Z w2

w1

pðaðw; cÞ;wÞgðwÞ dw: ð12Þ

We once again utilise a = a(w, c) to change the integration
variable from w to a, together with w = s�1 (c; a), to get

hðcÞ ¼
Z a2

a1

pða; s�1ðc; aÞÞgðs�1ðc; aÞÞ os�1ðc; aÞ
oa

����
���� da; ð13Þ

where a1 and a2 were defined after equation (13). Here, we
note that this is a Fredholm integral equation of the first
kind for g, as p depends on both c (via w = s�1 (c; a)) and
a. That is, p is a spatially varying kernel function, h is the
prescribed target and g is to be determined.

Figure 4. Schematic maps for specular reflectors (a), and diffuse reflectors (b).
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Under the assumption of isotropic scattering, the expli-
cit w-dependence in p is omitted, meaning we get p(a(w, c)),
or simply p(a). The w vs. c plot for such a situation is shown
in Figure 5. In contrast to Figure 4b, the support of q is now
a band of constant width, and the data represent that of
Example #2 in Section 4. Inserting a(w, c) and s�1(c; a)
from equation (6) into equations (12) and (13) yields

hðcÞ ¼
Z w2

w1

pðc� wÞgðwÞ dw; ð14aÞ

hðcÞ ¼
Z a2

a1

pðaÞgðc� aÞ da; ð14bÞ

which are convolution integrals. We shall use the common
notation of h(c) = (p*g)(c) for the convolution in equation
(14a). Due to the commutativity property of convolution
integrals, an equivalent definition is h(c) = (g*p)(c) in
equation (14b) ([14], p. 309). Obtaining g is now a matter
of deconvolving equation (14a) or (14b). There are a large
number of different deconvolution methods, but not all
are equally suitable for our purposes. In particular, g must
be nonnegative within a finite domain. This can be
achieved using an iterative ratio method, such as Gold’s
method, or the more common Richardson–Lucy method
of deconvolution [17]. We shall return to this topic in
Section 4.

2.2 Rotationally symmetric reflectors

To introduce rotationally symmetric, consider Figure 6a.
The situation is as follows. A point-source is located at
the origin O. The reflector is parametrised by
rðu; 0Þ ¼ uðuÞêr , where u(u) > 0 is at least twice continu-
ously differentiable and êr ¼ ðsinðuÞ cosð0Þ; sinðuÞ sinð0Þ;
cosðuÞÞ> is the radial unit vector in spherical coordinates.
The angle u 2 [0, p) is measured from the positive z-axis
and the angle 0 2 (�p, p) is measured from the positive
x-axis. Consider now a ray in direction ŝ � êr emitted from

the point source at O. Following its trajectory, it strikes the
reflector at a point P, where the unit normal to the surface
(not shown) is given by n̂. Like in the cylindrically symmet-
ric case, we adopt the convention ŝ � n̂ < 0, i.e., the normal
points towards the light source. From the LoR, equation
(1), we get an expression for the reflected ray t̂.

2.2.1 In-plane scattering

If, in addition to the reflector being rotationally symmetric,
the scattered direction is assumed to be in the plane of inci-
dence, the problem may be analysed in two dimensions. The
fact that the specular problem reduces to two dimensions is
shown in [10] of Chapter 3, and in-plane scattering pre-
serves this symmetry. The situation is shown in Figure 6b,
depicting the cross-section in the plane of incidence (here
taken as the xz-plane to distinguish from the xy-plane
used in the cylindrically symmetric problems). The two-
dimensional reflector is parametrised by rðuÞ ¼ uðuÞêr ,
where êr ¼ ðsinðuÞ; cosðuÞÞ>, u 2 ½0; pÞ measured from
the positive z-axis. The source ray ŝ � êr intersects the
reflector at a point P with unit normal n̂, and the specular
direction t̂ ¼ ðsinðwÞ; cosðwÞÞ>, w 2 ½0; pÞ (not shown)
measured from the positive z-axis, is given by the LoR,
equation (1). The scattered direction û ¼ ðsinðcÞ; cosðcÞÞ>,
c 2 [0, p) measured from the positive z-axis, is given by a
rotation by a stochastic parameter a of t̂, in accordance
with equation (2), around an axis parallel to the suppressed
y-axis passing through P.

Before proceeding, let us briefly discuss when such an
approximation is valid. The rotationally symmetric reflec-
tor is self-explanatory, but the in-plane scattering is less
straight-forward. The proposed situation where this may
hold is as follows. A rotationally symmetric reflector was
machined in a manner which left the surface chiselled so
that the chisel-marks follow a tightly-wound spiral along
the reflector. In this situation, we postulate that we may
study the cross-section in the plane of incidence, since the
symmetry of the problem is preserved. Within these restric-
tions, i.e., a rotationally symmetric reflector subject to our

Figure 5. Diffuse map w ! c (isotropic scattering; example #2 in Sect. 4).
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postulate of in-plane scattering only, we may readily use the
formulae in the prior sections, with a few changes that shall
be highlighted shortly. We furthermore assume that the
intensity distributions are rotationally symmetric, such that
the following description will suffice [lm/rad]:

� source intensity distribution f(u) > 0, u 2 [u1, u2],
� intermediate specular intensity distribution gðwÞ > 0;
w 2 ½w1;w2�,

� diffuse target intensity distribution hðcÞ > 0; c 2 ½c1; c2�.

The energy balances in equation (7) become

Z u2

u1

f ðuÞ sinðuÞu ¼
Z w2

w1

gðwÞ sinðwÞw

¼
Z c2

c1

hðcÞ sinðcÞ c; ð15Þ

where the sine terms come from the spherical area ele-
ments. Following the procedure in the previous section,
let us introduce the density q(w, c) 	 0, w 2 [w1, w2],
c 2 [c1, c2], such that

Z c2

c1

qðw; cÞ sinðcÞ dc ¼ gðwÞ; ð16aÞ

Z w2

w1

qðw; cÞ sinðwÞ dw ¼ hðcÞ: ð16bÞ

Comparing these equations to equation (8), notice that
they are the same up to the sine terms from the spherical
area elements. As such, the natural choice for q becomes
(recall Eq. (12); assuming isotropic scattering, i.e., no expli-
cit w-dependence)

qðw; cÞ sinðcÞ ¼ pðaðw; cÞÞgðwÞ: ð17Þ
We now substitute this q into equation (16a) to get the nor-
malisation conditionZ c2

c1

pðaðw; cÞÞ dc ¼ 1: ð18Þ

Transforming c to a yieldsZ a2

a1

p að Þ osðw; aÞ
oa

����
����da ¼ 1; ð19Þ

Figure 6. Rotationally symmetric reflectors exhibiting arbitrary (a), and in-plane (b) scattering; point source at O.
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where a1 and a2 were defined after equation (11). The
Jacobian |os/oa| = 1 via the mappings in equation (6).
Whence, the normalisation of p isZ a2

a1

pðaÞda ¼ 1: ð20Þ

Substituting q, defined in equation (17), into equation
(16b) yields

hðcÞ sinðcÞ ¼
Z w2

w1

pðaðw; cÞÞgðwÞ sinðwÞdw: ð21Þ

Absorbing the sine terms in the intensity distributions by
defining

~hðcÞ :¼ hðcÞ sinðcÞ; ~gðwÞ :¼ gðwÞ sinðwÞ; ð22Þ
and inserting a(w, c) from equation (6), yields

~hðcÞ ¼
Z w2

w1

pðc� wÞ~gðwÞ dw; ð23aÞ

~hðcÞ ¼
Z a2

a1

pðaÞ~gðc� aÞda; ð23bÞ

where the second equation is obtained by transforming w
to a. Comparing these to equations (14a) and (14b), it is
clear that they are the same, up to the sine terms from the
spherical area elements in the modified distributions. As
such, deconvolution is still a vital tool to obtain the spec-
ular target distribution used in the reflector design
procedure.

3 Specular reflector design

Having obtained a specular target distribution via deconvo-
lution, our goal is as follows. Determine a specular reflector
which transforms the given source distribution f into the
given target distribution g. The approach we have chosen
involves solving two ordinary differential equations (ODEs)
for the radius function u(u) and the mapping m(u), which
together fully characterise the reflector. This is similar to
the approach outlined in [13] of Chapter 3.3. Note that
the resulting equations are scale-invariant, so the physical
size of the final reflector is arbitrary and can be decided
by the optical engineer by choosing appropriate units of
length.

3.1 Cylindrically symmetric reflectors

Recall that the reflector is parametrised by rðuÞ ¼ uðuÞêr ,
and that u is measured counter-clockwise from the positive
x-axis (refer to Fig. 2). To start, note that a tangent vector
to the reflector is

s ¼ r0ðuÞ ¼ u0ðuÞêr þ uðuÞêu; ð24Þ
where êr ¼ ðcosðuÞ; sinðuÞÞ> and êu ¼ ð� sinðuÞ; cosðuÞÞ>
are the standard unit vectors in polar coordinates, and

where we made use of the relation êr 0 ¼ êu. The corre-
sponding normal vector can be constructed by rotating s
counter-clockwise, i.e.,

n ¼ Rðp=2Þs; Rðp=2Þ ¼ 0 �1

1 0

� �
; ð25Þ

where the rotation matrix R was initially defined in equa-
tion (2). The associated unit normal is

n̂ ¼ n
jnj ¼

n
jsj ¼

�uðuÞêr þ u0ðuÞêuffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðuÞ2 þ u0ðuÞ2

q ; ð26Þ

where we made use of the fact that Rðp=2Þêr ¼ êu and
Rðp=2Þêu ¼ �êr . Let vðuÞ :¼ lnðuðuÞÞ, so that

n̂ ¼ �êr þ v0ðuÞêuffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v0ðuÞ2

q : ð27Þ

Let us compute

ŝ � n̂ ¼ �1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v0ðuÞ2

q ; ð28Þ

which we shall use momentarily. In doing so, we made use
of the relation ŝ � êr . Note that ŝ � n̂ < 0, indicating we
rotated s the correct way to get n. From the LoR, equa-
tion (1), we get

ŝ � t̂ ¼ 1� 2ðŝ � n̂Þ2: ð29Þ
By geometrical arguments – see Figure 2a – it is clear that
ŝ � t̂ ¼ �ŝ � �t̂ ¼ cosðw� uÞ, such that together with equa-
tion (28), we get

cosðw� uÞ ¼ 1� 2

1þ v0ðuÞ2 ; ð30Þ

or, equivalently

v0ðuÞ ¼ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cosðw� uÞ
1� cosðw� uÞ

s
¼ cot

mðuÞ � u
2

� �
; ð31Þ

where we used the tangent half-angle relation ([16], p.
127) and switched from w to m(u) in the last step to high-
light that this is indeed the specular map – recall Figure 3,
which has an explicit u-dependence. To solve this ODE,
we shall make use of the arbitrary initial condition
v(u1) = 0. We thus have the initial value problem (IVP)

v0 uð Þ ¼ cot m uð Þ�u
2

� �
vðu1Þ ¼ 0

;

(
u1 < u < u2: ð32Þ

This IVP describes the rate of change of the reflector radius
function u, via v = ln(u), such that each incident angle u is
converted into the corresponding specular angle w = m(u).
At this stage, m is still unknown, and it is determined by
the first energy balance in equation (7).

As an example, we consider a monotonically increas-
ing or decreasing optical map m(u). Suppose we have a
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monotonically increasing function mðuÞ ¼: mdivðuÞ,
together with the condition mdivðu1Þ ¼ w1, such that the
reflected rays do not intersect, i.e., the ray bundle is diver-
gent. Since mdiv is by construction a valid solution, i.e., it
achieves g, given f, the following must hold for all
u 2 [u1, u2] (recall that w1 < w < w2)Z u

u1

f ð~uÞ d~u ¼
Z mdivðuÞ

w1

gð~wÞ d~w; ð33Þ

i.e., the total flux in the interval [u1, u] emitted by the
source is equivalent to the reflected flux in the image
interval [w1, mdiv(u)]. Differentiation with respect to u
immediately yields the IVP

m0
divðuÞ ¼ f ðuÞ

gðmdivðuÞÞ ;

mdivðu1Þ ¼ w1:

(
ð34Þ

Analogous considerations with a monotonically decreasing
function mðuÞ :¼ mconvðuÞ, where we instead have a con-
vergent ray bundle and where mconvðu1Þ ¼ w2, yield, for
all u 2 ½u1;u2�,

Z u

u1

f ð~uÞ d~u ¼
Z w2

mconvðuÞ
gð~wÞ d~w; ð35Þ

or in terms of the equivalent IVP,

m0
convðuÞ ¼ � f ðuÞ

gðmconvðuÞÞ
mconvðu1Þ ¼ w2

(
; u1 < u < u2: ð36Þ

Once the desired m(u) has been obtained by solving the
corresponding IVP, it is substituted into equation (32),
which is then solved, yielding vðuÞ and consequently
uðuÞ ¼ evðuÞ, which fully characterises the reflector.
Throughout this paper, we have utilised Matlab’s ode15s
routine to solve the IPVs.

3.2 Rotationally symmetric reflectors

In the case of rotationally symmetric reflectors, we measure
u 2 [0, p) from the positive z-axis, in the plane of incidence
– recall Figure 6b. Since # is constant, the reflector is para-
metrised by rðuÞ ¼ uðuÞêr , where êr ¼ ðsinðuÞ; cosðuÞÞ> is
the radial unit vector in this particular polar coordinate sys-
tem. Thus, the tangent vector becomes

s ¼ r0ðuÞ ¼ u0ðuÞêr þ uðuÞêu; ð37Þ
where êu ¼ ðcosðuÞ;� sinðuÞÞ> is the angular unit vector
in this polar coordinate system. To obtain the unit normal
pointing towards the source, we rotate the tangent vector
clockwise, i.e.,

n ¼ Rð�p=2Þs; Rð�p=2Þ ¼ 0 1

�1 0

� �
: ð38Þ

Following the procedure from the previous section, we end
up with a unit normal

n̂ ¼ �êr þ v0ðuÞêuffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v0ðuÞ2

q ; ð39Þ

after introducing vðuÞ :¼ lnðuðuÞÞ. Finally, we consider
the geometry of the situation (see Fig. 6b; w is analogous
to c) to conclude that ŝ � t̂ ¼ �ŝ � �t̂ ¼ cosðw� uÞ, so
that together with the law of reflection, equation (1),
the boundary condition v(u1) = 0, and the tangent half-
angle relation, we once again arrive at the IVP in equation
(32).

As in the cylindrically symmetric case, suppose we have
a monotonically increasing specular map mðuÞ ¼ mdivðuÞ.
Then, for any u 2 ½u1;u2�,Z u

u1

f ð~uÞ sinð~uÞ d~u ¼
Z mdivðuÞ

w1

gð~wÞ sinð~wÞ d~w; ð40Þ

or, formulated as an IVP

m0
divðuÞ ¼ f ðuÞ sinðuÞ

gðmdivðuÞÞ sinðmdivðuÞÞ
mdivðu1Þ ¼ w1:

(
; u1 < u < u2: ð41Þ

Similarly, for a monotonically decreasing mðuÞ ¼ mconvðuÞ,Z u

u1

f ð~uÞ sinð~wÞ d~u ¼
Z w2

mconvðuÞ
gð~wÞ sinð~wÞ d~w; ð42Þ

and the IVP becomes

m0
convðuÞ ¼ � f ðuÞ sinðuÞ

gðmconvðuÞÞ sinðmconvðuÞÞ
mconvðu1Þ ¼ w2

(
; u1 < u < u2:

ð43Þ
With these changes in mind, and the knowledge that the
IVP for v remains the same, we can conclude that the
design procedure outlined previously may be used without
further modifications.

3.3 Raytracing

Irrespective of how the reflector is computed, and whether
it is cylindrically or rotationally symmetric, a validation
method is required. The natural choice is raytracing, and
we have written our own two-dimensional raytracer, since
we must have full control of how the scattering occurs at
the surface in order to validate our model. In particular,
source, specular and diffuse (i.e., scattered) rays are all col-
lected. The source rays are generated from the appropriate
source distribution using Matlab’s rand routine, followed by
an intersection computation. When computing the reflec-
tor, we are left with discrete data points, and these form
reflector segments via piecewise-linear interpolation. As
such, all rays that fall within a reflector segment will use
the same normal in the computation of the reflected direc-
tion. The intersection point for a given source ray is decided
by computing the angle of a line connecting the centre of
each reflector segment and the origin O, and then compar-
ing these angles to that of the generated ray using Matlab’s
dsearchn routine. The specular rays are then computed
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using the law of reflection, equation (1), whilst the dif-
fuse rays are computed using a rotation matrix – recall
equation (2). The stochastic parameter a is sampled from
the chosen scattering function p. We shall use either a
Gaussian and Matlab’s randn routine or a Lorentzian
(Cauchy distribution) and Matlab’s rand routine in the
corresponding cumulative distribution function. The ray
collection is performed by equidistantly dividing the rele-
vant angular domain ((�p, p) or [0, p), for cylindrically
and rotationally symmetric distributions, respectively),
thus forming collection bins. The centres of the collection
bins are known, and the appropriate bin for a given ray is
then computed via a nearest point search using dsearchn,
and the number of rays collected by that bin is incremented
by unity. After this, the process is repeated until the
requested number of rays have been traced though the
system. Finally, the number of rays per collection bin is con-
verted into an intensity by dividing the probability of fall-
ing in each bin by the size of the bins and multiplying
with the total flux of the source, i.e.,

I j ¼
Prðuj�1 � u < ujÞ

�u

Z u2

u1

f ðuÞ du; ð44Þ

for cylindrically symmetric reflectors, and for the jth bin.
Here, Pr(uj�1 � u < uj) is the number of rays in the jth
bin divided by the total number of rays traced, i.e., the
probability of falling in the jth bin, and Du is the angular
size of the collection bins. The total flux of the source is
given by the integral over f. For rotationally symmetric
reflectors, we have

I j ¼
Prðuj�1 � u < ujÞ

�u

Z u2

u1

f ðuÞ sinðuÞdu: ð45Þ

More details regarding raytracing are available in [18], p.
34.

Angle convention

We adopt the (�p, p) angle convention for cylindrically
symmetric reflectors, so that we can make use of Matlab’s
atan2 function to compute the angles of the rays. The rota-
tionally symmetric problems will still use the polar [0, p)
convention. In addition to this, we shall define our target
distributions in terms of j(w) and j(c), where

jðhÞ :¼ �p� h; h < 0;

p� h; h > 0:

�
ð46Þ

Validation criterion

We utilise raytracing as a validation technique, so let us
define a criterion to quantify the differences between the
raytraced and predicted distributions. Specifically, we use
the root mean square (RMS) error defined as follows

eðh; h�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
n¼1

jhn � h�
nj2

vuut ; ð47Þ

where N is the number of collection bins of h*, and the
star indicates raytraced distributions. In most of our
examples, we use the deconvolved (subscript “dc”) specu-
lar distribution gdc, obtained by deconvolving equations
(14) or (23) when designing the reflectors. In this case, h
and h* will be hrc and h�

rc, respectively, where the “rc” sub-
script signifies “reconvolution”, that is hrc :¼ gdc�p.

4 Examples

This section presents three sample problems: two exhibiting
cylindrical symmetry and one with rotational symmetry.
To verify our model, we prescribe the specular target distri-
bution g exactly, and construct the diffuse target distribu-
tion h by convolving g and the chosen scattering PDF p.
We then compute the deconvolved specular distribution
gdc, which is used to design the reflectors. Finally, we ray-
trace the system and compare the result to our prediction.
In the rotationally symmetric example, we no longer know
the exact g, but rather we prescribe h exactly. This is more
similar to how we envision an optical designer working with
our model.

The computation time for these examples may be
divided as follows (times given for a portable workstation
with 4 cores, 8 threads @ 4 GHz and 32 GB of RAM):

� Computing the deconvolution:

– Depends on the number of distribution bins.
– Can be done very efficiently using Matlab routines,
such as the built-in deconvolucy routine we used.

– Using efficient routines, this step takes a few seconds
on our machine.

� Computing the specular reflector:

– Depends on the number of reflector segments, distri-
bution bins, and the stiffness of the ODEs.

– Involves solving two IVPs, which can be done using
various methods, such as Matlab’s ode15s routine,
which we used.

– For simple problems, like our examples, this step takes
up to a minute; for difficult problems it can take a few
minutes.

� Validating the reflectors using raytracing:

– Depends on the number of rays traced.
– This step can be parallelised to a very large extent,
and modern consumer GPUs have dedicated raytrac-
ing hardware.

– Using our raytracer in Matlab without any raytracing
hardware and tracing a total of 106 rays, this step
takes a few minutes.

From the above list, it is clear that the step we propose in
this paper, the deconvolution step, takes the least amount
of time.

4.1 Example #1: smooth target distribution

The specular problem consists of a homogeneous source f
being transformed into two partly overlapping Gaussians
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g. As for the choice of p, we opted for a Gaussian centred
around a = 0�, with standard deviation r = 10�. This is
supposed to represent relatively minor scattering when
compared to, e.g., Lambert’s cosine law, whilst still being
a significant deviation from a specular reflector. The diffuse
distribution h is the convolution between p and g, i.e.,
h = p*g. Worth noting is that Gaussians do not have finite
support, meaning we need to truncate the nonzero values
outside of [a1, a2] when performing the (de-)convolution.
We re-normalised p after truncation to ensure thatZ a2

a1

pðaÞ a ¼ 1. The problem is summarised in the box

below, where

N ðh; l; rÞ ¼ 1

r
ffiffiffiffiffiffi
2p

p exp � 1
2

h� l
r

� �2
 !

; ð48Þ

represents the Gaussian, centred at l with standard devi-
ation r. The value of u2 was chosen such that energy is

conserved up to
Z u2

u1

f uð Þdu=
Z w2

w1

gðwÞdw 	 10�3.

Since we are interested in validating the whole pro-
posed solution method, the first step is to find the specular

target distribution gdc by deconvolution. We shall utilise
Richardson–Lucy deconvolution, and in particular Matlab’s
deconvlucy routine. This iterative ratio method has
numerous benefits compared to direct methods, most
crucial for our purposes being guaranteed positivity of the
solution. The functions f, g, gdc, p, h, and hrc are shown in
Figure 7, for deconvlucy’s default settings of 10 iterations
with 128 sampling points. Clearly, the recovered gdc resem-
bles the original g relatively well (and it could be improved
by increasing the number of deconvolution iterations), and
the reconvolved hrc = gdc*p is nearly identical to h.

The next step is to design the reflectors. In order to use
the procedure outlined in Section 3, we need the limits w1
and w2. Recall that these should represent the support of
g (or, rather, gdc in this case). In this example, the limits
are ambiguous due to the Gaussians. We computed the lim-
its by fixing a threshold g = 0.001 and locating the two
extrema of j(w) where gdc (w) = g, using piecewise-linear
interpolation between the data points of gdc. The limits
are shown in Figure 8, and the reflectors are shown in
Figure 9. In this case, we do not know the exact solutions,
so we shall not discuss the reflectors further for this exam-
ple. We note that one could renormalise gdc to ensure more

Figure 7. Distributions in Example #1; 128 sample points.
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accurate energy conservation, but this has not been done in
the data shown. We have used 1024 sample points for the
reflectors in an attempt to minimise discretisation errors
due to the reflectors when validating the mconv reflector
using raytracing (recall that each ray striking a reflector
segment uses the same normal). The sample points are
equidistant in the [u1, u2]-range. The raytraced distribu-
tions and the RMS error from equation (47) are shown in
Figure 10, where we see that the source sampling is appro-
priate, and the resulting distributions are well predicted by
our model. In addition, the convergence shows the expected
N�1=2

r behaviour of Monte Carlo raytracing ([18], p. 9),
where Nr is the number of rays traced through the system.

There are a couple of regions where the raytraced distri-
butions deviate from our predictions. Specifically, f � near
u1 ¼ �p=4 and u2 ¼ 29p=75, g�dc near jðw2Þ 
 1:26 and
near both peaks of the Gaussians. The discrepancies in f �
are due to the bins not aligning perfectly with the support
of f , such that part of a collection bin may cross the u1- and

u2-boundaries. The discrepancies of g�dc are presumably
partly due to energy not being perfectly conserved, and
partly from the discretisation of the reflector surface, in
addition to the aforementioned binning issue. Additionally,
the very peaks of the Gaussians are only one or two data
points wide, and achieving that level of precision is no easy
feat, using a numerical scheme. Keeping all of these factors
in mind, the results are promising, and from the RMS error
plot, we see that increasing the number of rays is likely to
improve the result further.

4.2 Example #2: Block function as target distribution

We now move on to our second example, which at first
appears much simpler, but will prove to be quite a challenge
for our numerical scheme. The specular problem consists of
homogeneous illumination of a circular disk within ½w1;w2�
and f is homogeneous on ½u1;u2�. The scattering PDF p is
still a Gaussian, this time with a standard deviation of

Example #1: Smooth target distribution

u-range: [u1, u2] = [�p/4, 29p/75]

w-range: [w1, w2]: see text

a-range: [a1, a2] = [�p, p]

Source distribution: f ðuÞ ¼ 1 u 2 ½u1;u2�
0 otherwise

�
Specular target distribution: gðwÞ ¼ N ðw;�p=8; 10�Þ þN ðw; p=12; 15�Þ

Surface scattering function: pðaÞ ¼ N ða; 0; 10�Þ
Diffuse distribution prediction: hðcÞ ¼ ðp�gÞðcÞ
oundary condition: u(u1) = 1

Figure 8. The jðwÞ-boundaries used as the support of gdc in
Example #1.

Figure 9. Example #1; reflectors designed using gdc in Figure 7;
1024 sample points.
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r = 5�. We employ a similar approach to the first example,
i.e., prescribe g, compute h ¼ g�p and attempt to recover g
via deconvolution, then validate the reflectors we designed
using gdc with raytracing. The example is outlined in the

box below. We wish to highlight that the density qðw; cÞ
for this example is shown in Figure 5.

Using the default settings of deconvlucy (10 iterations)
yields gdc in Figure 11, where we immediately see that it

Example #2: Block function as target distribution

u-range: [u1, u2] = [�p/4, p/4]

w-range: [j(w1), j(w2)] = [�p/4, p/4]

a-range: [a1, a2] = [�p, p]

Source distribution: f ðuÞ ¼ 1 u 2 ½u1;u2�
0 otherwise

�

Specular target distribution: gðwÞ ¼ 1 w 2 ½w1;w2�
0 otherwise

�
Surface scattering function: pðaÞ ¼ N ða; 0; 5�Þ
Diffuse distribution prediction: hðcÞ ¼ ðp�gÞðcÞ
Boundary condition: u(u1) = 1

Figure 10. Example #1; raytraced distributions of mconv reflector with gdc; 10
6 rays.
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Figure 11. Initial distributions in Example #2; 128 sample points.

Figure 12. Example #2; deconvlucy deconvolution with 102 iterations (a), and 104 iterations (b).

J. Eur. Opt. Society-Rapid Publ. 19, 18 (2023) 15



deviates significantly from the original g. Readers who are
familiar with signal theory are likely not surprised by this,
as representing a block function in Fourier space requires
an infinite number of frequencies. Let us attempt to increase
the number of deconvolution iterations by an order of mag-
nitude – see Figure 12a. This shows a slight improvement,
but we are still quite far from the original g. As such, let
us further increase the number of iterations by two orders
of magnitude to get the result in Figure 12b, which is
certainly a lot closer to the original g. The RMS error e
(g, gdc), recall equation (47), decreased from 0.055 to
0.020 and 0.005, for 10, 102 and 104 iterations, respectively.
In a real problem, this metric would not be available to us,
so we would have to rely on the RMS error e(h, hrc), which

decreased from 10�3 to 10�4 and 10�6. Based solely on
e(h, hrc), it is not unreasonable that one might design the
reflector using the first gdc, so we shall include it as a
worst-case scenario, as well as the best gdc,, in the sense that
it has the lowest RMS error.

Turning to the topic of reflector design, consider the
reflectors in Figures 13a and 13b, designed using the origi-
nal g and the deconvolved gdc in Figure 11, respectively.
We note that the exact solutions to this problem are given
in [13] (p. 28) as a circle segment and a straight line, i.e., we
recover them using our numerical scheme. To the naked
eye, the two figures appear nigh identical, and it is only
when we plot the difference in radii of the mconv reflectors
in Figure 14 that we can appreciate the differences. From

Figure 13. Example #2; reflectors designed using g in Figure 11 (a), and gdc after 10 deconvolution iterations in Figure 11 (b); 1024
sample points.

Figure 14. Difference in reflector radii of the mconv reflectors in Figures 13a and 13b; slope of the subtracted linear correction term in
the right panel was 4.31 � 10�6.
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Figure 15. Example #2; raytraced distributions of mconv reflectors with g from Figure 11 (a), gdc from Figure 17 (b), and gdc from
Figure 12b (c); 106 rays.
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the raw (or unaltered) graph, we postulate that the devia-
tions can be decomposed into a sloped straight line and
comparatively small oscillations. In order to better appreci-
ate the oscillations, we thus subtracted a linear correction
factor from the raw data. This reveals the profile of gdc
(w), w 2 [w1, w2], present in the reflector surface. Notice
that the order of magnitude of the oscillations in the reflec-
tor surface is significantly smaller than that of the oscilla-
tions in the specular target distribution. In other words,
small changes in the reflector can result in significant
changes to the resulting distribution.

Shifting focus to raytracing, the results are shown in
Figures 15a–15c with g and gdc from Figure 11 (10 itera-
tions) and gdc from Figure 12 (104 iterations), respectively.
In all these cases, we used a total of 106 rays, and the mconv
reflectors. It is clear that the scheme works well, and the is-
sues we see were explained when discussing the previous
example. That is, binning and numerical errors due to dis-
cretisation. A slight asymmetry appears in the results for
the reflectors designed using the deconvolved gdc distribu-
tions. This can also be seen from the slope in Figure 14,

so the cause appears to be somewhere in the numerical com-
putation of the reflectors, presumably due to integration
from left to right. The discrepancy is minor, so an attempt
to correct it has not been made, as it is clear that the model
predicts the scattered distribution very well, and that the
resulting reflector can be validated using raytracing.

4.3 Example #3: Lorentzian scattering function

The rotationally symmetric example we have chosen differs
from the previous examples in two major ways. The first is
that we no longer know the exact g, but rather we prescribe
an exact h. This is more similar to how we envision an opti-
cal designer would incorporate our model in their workflow.
The second difference is that the scattering function is a
Lorentzian (also known as a Cauchy distribution). This is
significant for two reasons, namely that machined mirrors
often exhibit this type of bidirectional reflectance distribu-
tion function (BRDF) ([19], Chap. 4), and because the tails
fall to zero at a significantly lower rate. The latter fact
means that more large-angle scattering will occur when

Figure 16. Initial distributions in Example #3; 128 sample points.
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compared to the Gaussians we have used thus far. As such,
we increase the relevance of the method whilst testing the
limits of our model. The example is outlined in the box
below, where

Lðh; rÞ ¼ 1
pr

r2

h2 þ r2

� �
; ð49Þ

is the Lorentzian function with a full width at half
maximum (FWHM) of 2r; r is often denoted c in litera-
ture, but not here for obvious reasons. Note that we again
truncated the values of p outside of [a1, a2] and renor-

malised, such that
Z a2

a1

pðaÞda ¼ 1.

The distributions are shown in Figure 16, where we have
opted to absorb the sine terms from the energy balances,

equation (15), into the distributions (indicated by the
tilde). The deconvolved specular target distribution ~gdc
was computed using the default deconvlucy settings
with 10 iterations. Before designing the reflectors, let us
briefly consider what to expect from the final raytraced
distributions. In particular, since we have prescribed h,
rather than g, we are no longer guaranteed that the decon-
volution converges. We can get an appreciation for this by
comparing the reconvolved ~hrc :¼ ~gdc�p with our prescribed
~h in Figure 16. This may seem like a disappointing result,
but let us compare ~h, ~hrc and ~h�p, where the latter would
be the diffuse result if we disregarded scattering in the
design procedure entirely, i.e., if we designed the reflectors
using f and took h as g in the design procedure, and ray-
traced the optical system using our scattering model. All

Figure 17. The prescribed and predicted diffuse targets in
Example #3.

Figure 18. The j(w)-boundaries used as the support of gdc in
Example #3.

Figure 19. Example #3; reflectors designed using gdc in Figure 16 (a), and a three-dimensional version of the mconv reflector (b).
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of these distributions are shown in Figure 17, and the RMS
error eð~h; ~h�pÞ ¼ 0:0624, whilst eð~h; ~hrcÞ ¼ 0:0356, i.e., our
approach represents an improvement of approximately
40%. Visually, we see that the problematic regions for ~hrc
are partly the peaks and partly near jðc1Þ 
 1:02 and
jðc2Þ 
 2:22. The deviation close to the peaks could
perhaps be improved by increasing the number of deconvo-
lution iterations, but the problems close to the boundaries
are not solvable in our model. This is due to an inherent
“maximum steepness” dictated by the least steep function
we are deconvolving (in this case p), and it is a property
of deconvolution. The only way to reach the correct values
at the boundaries is to introduce negative values outside of
them, which would be unphysical.

We are now ready to design the reflectors. By fixing
g = 0.001 and locating the two values of jðwÞ where
gdcðwÞ ¼ g, we found jðw1Þ ¼ 1:08 and jðw2Þ ¼ 2:14, see
Figure 18. The reflectors computed using gdc as the specular
target distribution and f as the source distribution are
shown in Figures 19a and 19b, where the latter is a three-
dimensional version of the mconv reflector. The raytraced
distributions are shown in Figure 20a, where we see that
the source sampling ~f � is correct, as is the resulting diffuse
distribution ~h�

rc. As for the intermediate specular target dis-
tribution, some deviations from the target ~gdc may be seen,
especially near the first peak. These deviations are presum-
ably due to difficulties solving the relevant IVPs that give
the reflector radius function u, and they are likely the rea-
son why our RMS error convergence slows down after
approximately 105 rays. For the sake of completeness, we
also raytraced the mdiv reflector in Figure 20b. Here, we
only show ~gdc, ~g�dc, ~hrc and ~h�

rc, since the source sampling
is identical. It is clear that the diffuse distribution is still
very closely achieved, whilst the specular distribution devi-
ates in more obvious ways than with the mconv reflector.
This highlights the non-triviality of designing specular
reflectors, rather than any apparent flaw in our model of
scattering, and it could perhaps be improved by increasing

the sampling frequency of the distributions, or altering the
number of samples in the reflectors themselves. This has not
been attempted, since we are mostly interested in validating
our model for scattering, and indeed, even with these devi-
ations from the specular target distribution, the effect of
scattering smoothes them out greatly.

5 Conclusions

We have presented a novel modelling approach to include
surface scattering in the design of reflectors as part of opti-
cal systems. The approach is inspired by concepts from
optimal mass transport theory, and it relies on energy con-
servation. In the case of isotropic in-plane scattering and
cylindrical or rotational symmetry, the forward expression
of the scattered light reduces to a convolution integral
between a probability density function and a specular tar-
get function. By prescribing a desired diffuse target distri-
bution, and the scattering probability density function,
one can solve for the specular target distribution using
deconvolution methods from literature, and then compute
the reflectors using purely specular design procedures. As
such, including the effects of scattering can be considered
a pre-processing step, and all the mature specular reflector
design procedures remain essential. This gives the optical
designer a greater ability to use scattering to their advan-
tage, or mitigate it in applications where it is undesirable.

We view this work as a proof of concept and as an
important first step towards a generalised three-
dimensional model of surface scattering using geometrical
optics, with the ultimate goal of computing freeform reflec-
tors with scattering surfaces. Lifting the requirement of
in-plane scattering would significantly increase the applica-
bility of our model and we are actively working in this direc-
tion. Additionally, a manuscript exploring the connection
between this work and BRDF functions is currently in
review.

Example #3: Lorentzian Scattering Function

u-range: [u1, u2] = [p/4, 3p/4 � 0.34]

c-range: [j(c1), j(c2)] = [1.015, 2.222]

a-range: [a1, a2] = [�p, p]

Source distribution: f ðuÞ ¼ 1; u 2 ½u1;u2�
0; otherwise

�

Diffuse target distribution: hðcÞ ¼ sin4ð4cÞ � cosð3c� 3p=5Þ; c 2 ½c1; c2�
0; otherwise

�

Surface scattering function: pðaÞ ¼ Lða; 5�Þ

Boundary condition: u(u1) = 1
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Figure 20. Example #3; raytraced distributions of mconv reflector with gdc (a), and mdiv reflector with gdc (b); 10
6 rays.
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